I was reading an article on the new LG display with a refresh rate of 7680Hz and it says:

While a typical refresh rate for a monitor might be 60Hz-240Hz, an outdoor display designed to be viewed from a distance needs to be much higher

The idea that there’s an intrinsic link between refresh rate and viewing distance is new to me and feels unintuitive. I can understand the need for high brighteness for far view distance. I also could understand refresh rate mattering for a non-persistent (CRT) display. But for an Led display surely you can see it far away even if it refreshes once a second?

Refresh rate normally needs to be high enough to avoid pixels “jumping” between refreshes on high resolution displays, so wouldn’t higher view distances allow you to decrease the refresh rate?

Is the article just spouting bullshit? Or is there an actual link between refresh rate and view distance?

  • OsrsNeedsF2P@lemmy.ml
    link
    fedilink
    arrow-up
    4
    ·
    edit-2
    9 months ago

    The new outdoor LED series is designed to provide creative new possibilities for customers and the Philips Urban LED 6000 Series boasts a remarkable 10,000 nits brightness and a 7680Hz refresh rate (note, refresh rates for LED are only measured in Hz), offering impressive visual performance for viewing distances of between 10-30 meters.

    Article is worded badly. It’s the 10,000 nits brightness that makes it super visually “impressive” (keep in mind this is simply bright as heck to catch the corner of your eye through the smog). The refresh rate is still crazy high, I have no idea why they would want that

    Edit: nevermind, author doubled down:

    While a typical refresh rate for a monitor might be 60Hz-240Hz, an outdoor display designed to be viewed from a distance needs to be much higher.

    • cynar@lemmy.world
      link
      fedilink
      English
      arrow-up
      6
      ·
      9 months ago

      It’s likely the frequency of the individual LED drivers. A high frequency gives you more brightness steps available. A screen optimised for bright daylight would benefit significantly, when it’s used at night. E.g. if you run at 1% brightness, you lose 99% of your PWM range. At 1khz, that’s 10 steps of colour brightness resolution. At 7.68khz, it’s 76 steps, a far more usable number.