The US National Ignition Facility has achieved even higher energy yields since breaking even for the first time in 2022, but a practical fusion reactor is still a long way off
Just for comparison: The nuclear safety requirements of a fusion reactor are ballpark those of the radiology department in your local hospital: An accident will give you, if you’re unlucky, a dose on the order of a dental x-ray. Decommissioning involves letting it sit there for 100years until it has cooled down to ambient radioactivity levels, if you’re cheeky you could send it to a place where the natural radiation levels are higher and declare it cool much faster.
Why does noone talk about those ludicrously strong magnet fields and gigantic vacuum vessels? You’re standing right next to a massive volume of practically nothing and are worried that something leaks out?
Just for comparison: The nuclear safety requirements of a fusion reactor are ballpark those of the radiology department in your local hospital: An accident will give you, if you’re unlucky, a dose on the order of a dental x-ray. Decommissioning involves letting it sit there for 100years until it has cooled down to ambient radioactivity levels, if you’re cheeky you could send it to a place where the natural radiation levels are higher and declare it cool much faster.
Why does noone talk about those ludicrously strong magnet fields and gigantic vacuum vessels? You’re standing right next to a massive volume of practically nothing and are worried that something leaks out?