Unrelated, but the other day I read that the main computer for core calculation in Fukushima’s nuclear plant used to run a very old CPU with 4 cores. All calculations are done in each core, and the result must be exactly the same. If one of them was different, they knew there was a bit flip, and can discard that one calculation for that one core.
Interesting. I wonder why they didn’t just move it to somewhere with less radiation? And clearly, they have another more trustworthy machine doing the checking somehow. A self-correcting OS would have to parity check it’s parity checks somehow, which I’m sure is possible, but would be kind of novel.
In a really ugly environment, you might have to abandon semiconductors entirely, and go back to vacuum as the magical medium, since it’s radiation proof (false vacuum apocalypse aside). You could make a nuvistor integrated “chip” which could do the same stuff; the biggest challenge would be maintaining enough emissions from the tiny and quickly-cooling cathodes.
Unrelated, but the other day I read that the main computer for core calculation in Fukushima’s nuclear plant used to run a very old CPU with 4 cores. All calculations are done in each core, and the result must be exactly the same. If one of them was different, they knew there was a bit flip, and can discard that one calculation for that one core.
Interesting. I wonder why they didn’t just move it to somewhere with less radiation? And clearly, they have another more trustworthy machine doing the checking somehow. A self-correcting OS would have to parity check it’s parity checks somehow, which I’m sure is possible, but would be kind of novel.
In a really ugly environment, you might have to abandon semiconductors entirely, and go back to vacuum as the magical medium, since it’s radiation proof (false vacuum apocalypse aside). You could make a nuvistor integrated “chip” which could do the same stuff; the biggest challenge would be maintaining enough emissions from the tiny and quickly-cooling cathodes.